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If Co(fs, * + * ,fu) is the fan-out s combinational complexity of the functions

fl, fz, ’

of fan-in r, then it is shown that
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- -, o with respect to straight-line algorithms (or combinational machines)
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where N is the number of variables on which f,,

s—1

-+« f, depend and d = C,(I)

where I is the identity function in one variable. Thus, a well-designed combina-
tional machine or algorithm will not have a fan-out which is more than several

times its fan-in.

l. Introduction

In this paper we develop bounds on the fan-out s com-
binational complexity of functions. These bounds show
that the combinational complexity of functions has a weak
dependence on fan-out when s==2,

Il. Bounds on Combinational Complexity

Before we develop the promised bounds, we state the
following definitions which are needed in the sequel.
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DerFintTioN 1. Let Q be a set of functions over the set =,
such that if h;:€Q, then h;:3" —> 3. Let

r=3U{X,X; -, Xy}

Then, an (Q,T) algorithm (or “straight-line” algorithm) is
a K-tuple B = (B4, B., - - - , Bx) where either B €T or B =
(his ki, ke, -+ ka,), hi€Q, 1=k, < k. The set of func-
tions (81, Bz, ' * + , Bk) is associated with 3 where B = By if
,BkGF and Bk = h,; (lgkl’ o, ’Bkn) lf

Bx = (hi; kl, kz, o ,kn»)

3
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An algorithm B is said to compute the functions

fi:2™ >3, m, =N, 1=(=L

if there exist By, , *

* Bmy, such that f, = Bm,
The fan-in of Q is

7 = maxn;
i

where h;:€Q, h;: 2" — 3. If 8 computes fi,f., * -+ ,fL
where f; = B, 1 =1 = L, let y; the number of steps of g
Wthh use ﬂi, lf Bi¢2, and Yi — 0, ﬁiGE and let 0, = Yi,
istmy,m,, - - - ,myand §; = y; + 1 otherwise. Then, the
fan-out of B is

s =max¥;
i

Derinttion 2. The combinational complexity with fan-
out s of
firs™os,  1=01=L, C,f, - ,fu)

is the smallest number of steps Bx¢T of any (Q,T) algo-
rithm which computes these functions, if one such exists;
otherwise C, (f,, - - - ,fu) is o0. Associated with any (Q,T)
algorithm is a graph G in which vertices correspond to
steps of the algorithm and edges are directed and ordered
from vertices corresponding to B, * -, By, to the ver-
tex corresponding to Bi if Br = (hi; By, © ’Bk"i>' Ver-
tices corresponding to steps Br€T are called source vertices.

Combinational machines are circuits which correspond
to the graphs of (Q, T) algorithms in which 3 = {0,1} and
Q is a set of Boolean functions; thus, there is an equiva-
lence between combinational machines and straight-line
algorithms. These algorithms are called “straight-line”
because they do not permit loops or conditional branch-
ing. We now state the principal result of this article.

Tueorem. Let f,, - + - ,{. be distinct functions over X
which depend on N variables. Let Q have fan-in r and let

it be such that an (Q,T) algorithm exists for the identity
function I in one variable. Then

Coo(fl, o >f2)écs(f1’ T >7cb>
d(r—1)
é(ﬁ“)
X Calfy o fe) + o (L= N)
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where d = C, ().

Proof. Let B be a straight-line algorithm with fan-out s
which computes f,, - - - ,f. with C(f,, - - - ,f) opera-
tions. The directed graph of g has N source vertices and
L vertices identified with the distinct functions fi, - - * , fz.
To the graph G of g add L vertices with edges directed
into them from the vertices identified with these func-
tions. The number of edges incident upon vertices in this
new graph G’ is at most rC,, (f., - - - ,fr) + L since each
of the original vertices has at most r edges directed into
them. Thus, if 6; edges are directed away from the ith
vertex of G’ then

S0, =1Cu(fy, - - fu) + L

where the sum is over all vertices except those associated
with constants.

Since Q is complete, the identity function on one varia-
ble I (x) can be constructed with some number, e.g., d, of
elements from it with fan-out s. For each 1, if the ith ver-
tex of the graph G’ has §; edges directed away from it, we
can add h(;, s) copies of the algorithm realizing I (x) to
produce a graph G” which has fan-out s. Here

6, —1
s—1

h(f,,s)=
so the number of elements in G” is bounded above by

d
3 (6~ 1)+ Cu

1

where the sum on i is taken over all vertices of G includ-
ing all source vertices other than those associated with
constants. Since C, (f;, - * - ,f.) is the minimum number
of operations required to realize f,, - - - , f;, with fan-out s,
it follows that

d
Cs(fla o ,fb)és_ l(rcw(fla T 7fL>

+L—C,—N)+C.,

The left-hand equality of the theorem follows since
C:(fs, * - ,fu) is a non-increasing function of s. QED.

The significance of this result is that all of the com-
plexity measures C,, C, - -+, C., differ by at most a con-
stant. Also, C, approaches C., with increasing s when 7 is
fixed. For many sets Q, d = 1; for example, this is true for
the set of addition, subtraction, multiplication and divi-
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sion over the reals and the set of AND, OR and NOT over
the set {0,1}. However, d = 2 for the set Q containing
only NAND over {0, 1}.

The combinational complexity of a function with fan-
out 1, C,, can differ substantially from its combinational

complexity with unlimited fan-out. Subbotovskaya (Ref. 1)
has shown that the Boolean function f(x,, - * - ,xy) =
X.®P - -+ P Xy where @ denotes the EXCLUSIVE OR
has C, (f) > a,N*? for some constant a, when Q consists
of AND, OR and NOT and C,, (f) < a,N for some other
constant a,.
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